FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Na mecânica quântica e na teoria quântica de campos , o propagador é uma função que especifica a amplitude de probabilidade de uma partícula viajar de um lugar para outro em um determinado tempo, ou viajar com uma certa energia e momento. Nos diagramas de Feynman , que servem para calcular a taxa de colisões na teoria quântica de campos , as partículas virtuais contribuem com seu propagador para a taxa do evento de espalhamento descrito pelo respectivo diagrama. Eles também podem ser vistos como o inverso do operador de onda apropriado para a partícula e, portanto, são frequentemente chamados(causal) As funções de Green (chamadas " causais " para distingui-lo da função elíptica de Laplaciano Green)). [1] [2]
Propagadores não-relativísticos [ editar ]
Na mecânica quântica não-relativística, o propagador fornece a amplitude de probabilidade de uma partícula viajar de um ponto espacial de uma vez para outro ponto espacial posteriormente.
Considere-se um sistema com Hamiltoniano H . A função de Green ( solução fundamental ) para a equação de Schrödinger é uma função
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
satisfatório
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde H x denota o Hamiltoniano escrito em termos das coordenadas x , δ ( x ) denota a função delta Dirac , Θ ( t ) é a função de passo Heaviside e K ( x , t ; x ′ , t ′ ) é o núcleo do operador diferencial Schrödinger acima entre parênteses grandes. O termo propagador é usado algumas vezes neste contexto para se referir a G e, outras vezes, a K. Este artigo usará o termo para se referir a K (cf. princípio de Duhamel ).
Este propagador também pode ser escrito como a amplitude de transição
onde Û ( t , t ' ) é o operador unitário de evolução no tempo para o sistema que leva estados no tempo t' para estados no tempo t . Observe a condição inicial imposta por .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde as condições de contorno da integral do caminho incluem q ( t ) = x , q ( t ′ ) = x ′ . Aqui L denota o Lagrangiano do sistema. Os caminhos somados se movem apenas para frente no tempo e são integrados ao diferencial que segue o caminho no tempo.
Na mecânica quântica não-relativística , o propagador permite encontrar a função de onda de um sistema, dada uma função inicial de onda e um intervalo de tempo. A nova função de onda é especificada pela equação
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Se K ( x , t ; x ', t ') depende apenas da diferença x - x ' , esta é uma convolução da função inicial da onda e do propagador.
Exemplos básicos: propagador de partículas livres e oscilador harmônico [ editar ]
Para um sistema invariante de translação no tempo, o propagador depende apenas da diferença de tempo t - t ' , portanto pode ser reescrito como
O propagador de uma partícula livre unidimensional , com a expressão de extrema direita obtida por métodos de ponto de sela , é então
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Da mesma forma, o propagador de um oscilador harmônico quântico unidimensional é o núcleo de Mehler , [3] [4]
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Este último pode ser obtido a partir do resultado anterior de partículas livres, mediante o uso da identidade do grupo de mentiras SU (2) de van Kortryk,
-
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
válido para operadores e satisfazendo a relação de Heisenberg .
Para o caso N- dimensional, o propagador pode ser simplesmente obtido pelo produto
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Propagadores relativísticos [ editar ]
Na mecânica quântica relativística e na teoria quântica de campos, os propagadores são invariantes a Lorentz . Eles dão a amplitude para uma partícula viajar entre dois pontos no espaço-tempo .
Propagador escalar [ editar ]
Na teoria quântica de campos, a teoria de um campo escalar livre (sem interação) é um exemplo útil e simples que serve para ilustrar os conceitos necessários para teorias mais complicadas. Descreve spin zero partículas. Existem vários propagadores possíveis para a teoria de campo escalar livre. Agora descrevemos os mais comuns.
Espaço posição [ editar ]
Os propagadores do espaço de posição são funções de Green para a equação de Klein-Gordon . Isso significa que são funções G ( x , y ) que satisfazem
Onde:
- x, y são dois pontos no espaço-tempo de Minkowski .
- é o operador d'Alembertiano que atua nas coordenadas x .
- δ ( x - y ) é a função delta Dirac .
(Como é típico nos cálculos da teoria quântica de campos relativísticos , usamos unidades em que a velocidade da luz , c , e a constante reduzida de Planck , ħ , são definidas para a unidade).
Restringiremos a atenção ao espaço-tempo 4-dimensional de Minkowski . Podemos realizar uma transformação de Fourier da equação para o propagador, obtendo
Essa equação pode ser invertida no sentido de distribuições, observando que a equação xf (x) = 1 tem a solução (consulte o teorema de Sokhotski-Plemelj )
com ε implicando o limite em zero. Abaixo, discutimos a escolha certa do sinal resultante de requisitos de causalidade.
A solução é
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Onde
As diferentes opções de como deformar o contorno de integração na expressão acima levam a várias formas para o propagador. A escolha do contorno é geralmente formulada em termos de integrante.
O integrando tem dois pólos em
escolhas tão diferentes de como evitar isso levam a diferentes propagadores.
Propagadores causais [ editar ]
Propagador retardado [ editar ]
Um contorno no sentido horário sobre os dois pólos fornece o propagador retardado causal . Isso é zero se xy for espacial ou se x ⁰ < y ⁰ (ou seja, se y for o futuro de x ).
Aqui
é o momento adequado de x para y eé uma função de Bessel do primeiro tipo . A expressãosignifica que y precede causalmente x que, para o espaço-tempo de Minkowski, significa
- e
Essa expressão pode estar relacionada ao valor da expectativa de vácuo do comutador do operador de campo escalar livre,
Onde
Propagador avançado [ editar ]
Um contorno que gira no sentido anti-horário sob os dois pólos fornece o propagador causal avançado . Isso é zero se xy for espacial ou se x ⁰> y ⁰ (ou seja, se y for o passado de x ).
Essa escolha do contorno é equivalente ao cálculo do limite [5]
Essa expressão também pode ser expressa em termos do valor da expectativa de vácuo do comutador do campo escalar livre. Nesse caso,
Propagador Feynman [ editar ]
Um contorno que passa por baixo do poste esquerdo e por cima do poste direito dá o propagador de Feynman .
Essa escolha do contorno é equivalente ao cálculo do limite [6]
Aqui
onde x e y são dois pontos no espaço-tempo de Minkowski e o ponto no expoente é um produto interno de quatro vetores . H 1 (1) é uma função de Hankel e K 1 é uma função de Bessel modificada .
Essa expressão pode ser derivada diretamente da teoria do campo, já que o valor da expectativa de vácuo do produto ordenado por tempo do campo escalar livre, ou seja, o produto sempre é utilizado para que a ordem temporal dos pontos do espaço-tempo seja a mesma,
Esta expressão é Lorentz invariante , enquanto os operadores de campo comutar um com o outro quando os pontos x e y são separados por um tipo espaço intervalo.
A derivação usual é a de inserir um conjunto completo de estados de momento de partícula única entre os campos com Lorentz normalização covariante, e para, em seguida, mostram que os q funções que fornecem o tempo pedidos causal pode ser obtido por um integrante contorno ao longo do eixo de energia, se o O integrando é como acima (daí a parte imaginária infinitesimal), para mover o pólo da linha real.
Propagador de espaço de momento [ editar ]
A transformação de Fourier dos propagadores do espaço de posição pode ser considerada como propagador no espaço do momento . Estes assumem uma forma muito mais simples que os propagadores de espaço de posição.
Geralmente, eles são escritos com um termo ε explícito, embora seja entendido como um lembrete sobre qual contorno de integração é apropriado (veja acima). Este termo ε é incluído para incorporar condições de contorno e causalidade (veja abaixo).
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Para fins dos cálculos do diagrama de Feynman, geralmente é conveniente escrevê-los com um fator geral adicional de −i (as convenções variam).
Mais rápido que a luz? [ editar ]
O propagador de Feynman tem algumas propriedades que parecem desconcertantes a princípio. Em particular, diferentemente do comutador, o propagador é diferente de zero fora do cone de luz , embora caia rapidamente por intervalos espaciais. Interpretado como uma amplitude para o movimento das partículas, isso se traduz na partícula virtual que viaja mais rápido que a luz. Não é imediatamente óbvio como isso pode ser reconciliado com a causalidade: podemos usar partículas virtuais mais rápidas que a luz para enviar mensagens mais rápidas que a luz?
A resposta é não: enquanto na mecânica clássica os intervalos ao longo dos quais partículas e efeitos causais podem viajar são os mesmos, isso não é mais verdade na teoria quântica de campos, onde são os comutadores que determinam quais operadores podem se afetar.
Então, o que representa a parte espacial do propagador? Na QFT, o vácuo é um participante ativo, e os números de partículas e os valores de campo são relacionados por um princípio de incerteza ; os valores do campo são incertos, mesmo para o número de partículas zero . Existe uma amplitude de probabilidade diferente de zero para encontrar uma flutuação significativa no valor de vácuo do campo Φ ( x )se for medido localmente (ou, para ser mais preciso, se for medido um operador obtido pela média do campo em uma pequena região). Além disso, a dinâmica dos campos tende a favorecer flutuações espacialmente correlacionadas em certa medida. O produto com ordem de tempo diferente de zero para campos separados por espaço, mede a amplitude de uma correlação não-local nessas flutuações de vácuo, análoga a uma correlação de EPR . De fato, o propagador é freqüentemente chamado de função de correlação de dois pontos para o campo livre .
Uma vez que, pelos postulados da teoria quântica de campos, todos os operadores observáveis se comunicam na separação espacial, as mensagens não podem mais ser enviadas por essas correlações do que por qualquer outra correlação EPR; as correlações estão em variáveis aleatórias.
Em relação às partículas virtuais, o propagador na separação espacial pode ser considerado um meio de calcular a amplitude para criar um par virtual de partículas e antipartículas que eventualmente desaparece no vácuo ou para detectar um par virtual emergindo do vácuo. Na linguagem de Feynman , esses processos de criação e aniquilação são equivalentes a uma partícula virtual vagando para trás e para frente no tempo, o que pode levá-la para fora do cone de luz. No entanto, nenhuma sinalização de volta no tempo é permitida.
Explicação usando limites [ editar ]
Isso pode ser esclarecido escrevendo o propagador da seguinte forma para um fóton sem massa,
Essa é a definição usual, mas normalizada por um fator de . Então a regra é que só se aceita o limite no final de um cálculo.
Vê-se que
- E se
e
- E se
Portanto, isso significa que um único fóton permanecerá sempre no cone de luz. Também é mostrado que a probabilidade total de um fóton a qualquer momento deve ser normalizada pelo inverso do seguinte fator:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Vemos que as partes fora do cone de luz geralmente são zero no limite e são importantes apenas nos diagramas de Feynman.
Propagadores nos diagramas de Feynman [ editar ]
O uso mais comum do propagador é no cálculo de amplitudes de probabilidade para interações de partículas usando diagramas de Feynman . Esses cálculos geralmente são realizados no espaço de momento. Em geral, a amplitude recebe um fator do propagador para cada linha interna , ou seja, toda linha que não representa uma partícula de entrada ou saída no estado inicial ou final. Também obterá um fator proporcional e similar na forma a um termo de interação no Lagrangiano da teoria para cada vértice interno onde as linhas se encontram. Essas prescrições são conhecidas como regras de Feynman .
Linhas internas correspondem a partículas virtuais. Como o propagador não desaparece por combinações de energia e momento não permitidas pelas equações clássicas do movimento, dizemos que é permitido que as partículas virtuais estejam desprotegidas . De fato, como o propagador é obtido invertendo a equação da onda, em geral, ele terá singularidades na casca.
A energia transportada pela partícula no propagador pode até ser negativa . Isso pode ser interpretado simplesmente como o caso em que, em vez de uma partícula ir para um lado, sua antipartícula está indo para o outro lado e, portanto, carregando um fluxo oposto de energia positiva. O propagador abrange as duas possibilidades. Isso significa que é preciso ter cuidado com os sinais de menos para o caso dos férmions , cujos propagadores nem sequer funcionam na energia e no momento (veja abaixo).
Partículas virtuais conservam energia e momento. No entanto, como eles podem estar fora da concha, onde quer que o diagrama contenha um loop fechado , as energias e o momento das partículas virtuais que participam do loop serão parcialmente irrestritas, uma vez que uma alteração na quantidade de uma partícula no loop pode ser equilibrada. por uma mudança igual e oposta em outra. Portanto, todo loop em um diagrama de Feynman requer uma integral ao longo de um continuum de possíveis energias e momentos. Em geral, essas integrais de produtos de propagadores podem divergir, uma situação que deve ser tratada pelo processo de renormalização .
Outras teorias [ editar ]
Rotação 1 / 2 [ editar ]
Se a partícula possui rotação , seu propagador é geralmente um pouco mais complicado, pois envolve os índices de rotação ou polarização da partícula. A equação diferencial satisfeita pelo propagador para uma rotação 1 / 2 de partículas é dado por [7]
onde I 4 é a matriz unitária em quatro dimensões e empregando a notação de barra de Feynman . Esta é a equação de Dirac para uma fonte de função delta no espaço-tempo. Usando a representação do momento,
a equação se torna
onde no lado direito é usada uma representação integral da função delta quadridimensional. portanto
Multiplicando da esquerda com
o propagador de momento-espaço usado nos diagramas de Feynman para um campo de Dirac representando o elétron na eletrodinâmica quântica tem forma
Os iε andar de baixo é uma receita para como lidar com os pólos no complexo p 0 -Plane. Ele gera automaticamente o contorno de integração de Feynman , deslocando os pólos adequadamente. Às vezes está escrito
como diminutivo. Deve-se lembrar que esta expressão é apenas uma notação abreviada de ( γ μ p μ - m ) −1 . "Um over matrix" não faz sentido. No espaço de posição,
Isso está relacionado ao propagador de Feynman por
Onde .
Rodada 1 [ editar ]
O propagador de um bóson de um calibre em uma teoria de calibre depende da escolha da convenção para consertar o calibre. Para o medidor usado por Feynman e Stueckelberg , o propagador de um fóton é
O propagador para um campo vetorial massivo pode ser derivado do Lagrangiano de Stueckelberg. O formulário geral com o parâmetro de medida λ lê
Com essa forma geral, obtém-se o propagador em bitola unitária para λ = 0 , o propagador em bitola Feynman ou 't Hooft para λ = 1 e em bitola Landau ou Lorenz para λ = ∞ . Também existem outras notações em que o parâmetro gauge é o inverso de λ . O nome do propagador, no entanto, refere-se à sua forma final e não necessariamente ao valor do parâmetro gauge.
Bitola unitária:
Medidor de Feynman ('t Hooft):
Calibre Landau (Lorenz):
Propagador de graviton [ editar ]
Onde é o número de dimensões do espaço-tempo, é o operador de projeção spin-2 transversal e sem rastreamento eé um multipleto escalar spin-0 . O propagador gravitacional do espaço (Anti) de Sitter é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Onde é a constante do Hubble . Observe que, ao tomar o limite e , o propagador do AdS se reduz ao propagador de Minkowski. [9]
Funções singulares relacionadas [ editar ]
Os propagadores escalares são funções de Green para a equação de Klein-Gordon. Existem funções singulares relacionadas que são importantes na teoria quântica de campos . Seguimos a notação em Bjorken e Drell. [10] Ver também Bogolyubov e Shirkov (apêndice A). Essas funções são definidas de maneira mais simples em termos do valor esperado de vácuo dos produtos dos operadores de campo.
Soluções para a equação de Klein-Gordon [ editar ]
Função Pauli-Jordan [ editar ]
com
Isso satisfaz
e é zero se .
Partes de frequência positiva e negativa (propagadores cortados) [ editar ]
Podemos definir as partes de frequência positiva e negativa de , às vezes chamados propagadores de corte, de maneira relativisticamente invariável.
Isso nos permite definir a parte da frequência positiva:
e a parte de frequência negativa:
Estes satisfazem [10]
e
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Função auxiliar [ editar ]
O anti-comutador de dois operadores de campo escalares define função por
com
Isso satisfaz
Funções de Green para a equação de Klein-Gordon [ editar ]
Os propagadores retardados, avançados e de Feynman definidos acima são todas as funções de Green para a equação de Klein-Gordon.
Eles estão relacionados às funções singulares por [10]
Onde